ANALISIS PEMANFAATAN GAS BUANG PADA MESIN GENERATOR SET MELALUI SISTEM ORGANIC RANKINE CYCLE

Authors

  • Iing Mustain AKMI Suaka Bahari Cirebon

DOI:

https://doi.org/10.33556/jstm.v21i2.271

Abstract

Penelitian ini bertujuan untuk mendapat gambaran pemanfaatan gas buang dari mesin diesel generator set sebagai sumber panas. Pemanfaatan sumber panas digunakan untuk memanaskan air sebagai fluida kerja yang pada sistem ORC. Metode penelitian ini bersifat kualitatif dengan menganalisis pemanfaatan gas buang dari mesin diesel generator sets kapal Type GFS – 20 No. A737009 yang dihubungkan dengan sistem perpipaan untuk diketahui besar temperatur aliran fluida kerja pada sistem ORC temperatur rendah melalui diagram T-S. Berdasarkan hasil penelitian bahwa diperoleh temperatur luaran dari evaporator mencapai 90 oC, sementara temperatur pada recuperator mencapai 80 oC dan 30oC pada temperatur luaran dari kondensor. Besar temperatur pinch point pada suhu 85 oC dan selisih point temperatur aliran panas dan aliran dingin (DT) sebesar 10 oC. Besar energi yang direcovery diperoleh 40 kW. 

 

Kata Kunci: Evaporator, Mesin diesel, Generator sets, ORC, WHR

References

Algieri, A., & Morrone, P. (2014). Techno-economic analysis of biomass-fired ORC systems for single-family combined heat and power (CHP) applications. Energy Procedia, 45, 1285–1294. https://doi.org/10.1016/j.egypro.2014.01.134

Bellolio, S., Lemort, V., & Rigo, P. (2015). Organic Rankine Cycle Systems for Waste Heat Recovery in Marine Applications. SCC 2015, International Conference on Shipping in Changing Climates.

Burlian, F., & Ghafara, A. (2013). Perancangan Ulang Heat Recovery Steam Generator Dengan Sistem Dual Pressure Melalui Pemanfaatan Gas Buang Sebuah Turbin Gas Berdaya 160 Mw. Jurnal Rekayasa Mesin Universitas Sriwijaya, 13(1),21–33.

Corbett, J. J. (2003). New Directions: Designing ship emissions and impacts research to inform both science and policy. Atmospheric Environment, 37(33), 4719–4721. https://doi.org/10.1016/j.atmosenv.2003.08.003

Crespi, F., Gavagnin, G., Sánchez, D., & Martínez, G. S. (2017). Supercritical carbon dioxide cycles for power generation: A review. Applied Energy, 195, 152–183. https://doi.org/10.1016/j.apenergy.2017.02.048

Guo, C., Du, X., Yang, L., & Yang, Y. (2015). Organic Rankine cycle for power recovery of exhaust flue gas. Applied Thermal Engineering, 75, 135–144. https://doi.org/10.1016/j.applthermaleng.2014.09.080

Heberle, F., Schifflechner, C., & Brüggemann, D. (2016). Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics, 64, 392–400. https://doi.org/10.1016/j.geothermics.2016.06.010

Hidayat, R. (2017). Analisa Pengaruh Variasi Pinch Point Dan Approach Point Terhadap Performa Heat Recovery Steam Generator Tipe Dual Pressure.

Kemp, I. C. (2007). Key concepts of pinch analysis. In Pinch Analysis and Process Integration (Second Edi, pp. 15–38). Elsevier’s Science & Technology.

Larsen, U., Sigthorsson, O., & Haglind, F. (2014). A comparison of advanced heat recovery power cycles in a combined cycle for large ships. Energy, 74(C), 260–268. https://doi.org/10.1016/j.energy.2014.06.096

Linnhoff, B., Mason, D. R. and Wardle, I. (1979). Understanding heat exchanger networks. Comp Chem Eng, 3, 295–302.

Mat Nawi, Z., Kamarudin, S. K., Sheikh Abdullah, S. R., & Lam, S. S. (2019). The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle. Energy, 166, 17–31. https://doi.org/10.1016/j.energy.2018.10.064

Pulat, E., Etemoglu, A. B., & Can, M. (2009). Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa. Renewable and Sustainable Energy Reviews, 13(3), 663–672. https://doi.org/10.1016/j.rser.2007.10.002

Rayegan, R., & Tao, Y. X. (2011). A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs). Renewable Energy, 36(2), 659–670. https://doi.org/10.1016/j.renene.2010.07 .010

Safari, F., & Ataei, A. (2015). Thermodynamic Performance Analysis of Different Organic Rankine Cycles to Generate Power from Renewable Energy Resources. 4th International Conference on Emerging Trends in Energy Conservation, 1(2), 31–38. http://www.researchgate.net/publication/271530870_Thermodynamic_Performance_Analysis_of_Different_Organic_Rankine_Cycles_to_Generate_Power_from_Renewable_Energy_Resources

Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles. Energy, 32(7), 1210–1221. https://doi.org/10.1016/j.energy.2006.07.001

Sprouse, C., & Depcik, C. (2013). Organic rankine cycles with dry fluids for small engine exhaust waste heat recovery. SAE International Journal of Alternative Powertrains, 2(1), 96–104. https://doi.org/10.4271/2013-01-0878

Wang, H., Xu, J., Yang, X., Miao, Z., & Yu, C. (2015). Organic Rankine cycle saves energy and reduces gas emissions for cement production. Energy, 86, 59–73. https://doi.org/10.1016/j.energy.2015.03.112

Zhang, X., Wu, L., Wang, X., & Ju, G. (2016). Comparative study of waste heat steam SRC, ORC and S-ORC power generation systems in medium-low temperature. Applied Thermal Engineering, 106, 1427–1439. https://doi.org/10.1016/j.applthermaleng.2016.06.108

Published

2021-03-15

Issue

Section

JURNAL SAINS DAN TEKNOLOGI MARITIM