ANALISIS PEMANFAATAN GAS BUANG PADA MESIN GENERATOR SET MELALUI SISTEM ORGANIC RANKINE CYCLE
DOI:
https://doi.org/10.33556/jstm.v21i2.271Abstract
Penelitian ini bertujuan untuk mendapat gambaran pemanfaatan gas buang dari mesin diesel generator set sebagai sumber panas. Pemanfaatan sumber panas digunakan untuk memanaskan air sebagai fluida kerja yang pada sistem ORC. Metode penelitian ini bersifat kualitatif dengan menganalisis pemanfaatan gas buang dari mesin diesel generator sets kapal Type GFS – 20 No. A737009 yang dihubungkan dengan sistem perpipaan untuk diketahui besar temperatur aliran fluida kerja pada sistem ORC temperatur rendah melalui diagram T-S. Berdasarkan hasil penelitian bahwa diperoleh temperatur luaran dari evaporator mencapai 90 oC, sementara temperatur pada recuperator mencapai 80 oC dan 30oC pada temperatur luaran dari kondensor. Besar temperatur pinch point pada suhu 85 oC dan selisih point temperatur aliran panas dan aliran dingin (DT) sebesar 10 oC. Besar energi yang direcovery diperoleh 40 kW.
Kata Kunci: Evaporator, Mesin diesel, Generator sets, ORC, WHR
References
Algieri, A., & Morrone, P. (2014). Techno-economic analysis of biomass-fired ORC systems for single-family combined heat and power (CHP) applications. Energy Procedia, 45, 1285–1294. https://doi.org/10.1016/j.egypro.2014.01.134
Bellolio, S., Lemort, V., & Rigo, P. (2015). Organic Rankine Cycle Systems for Waste Heat Recovery in Marine Applications. SCC 2015, International Conference on Shipping in Changing Climates.
Burlian, F., & Ghafara, A. (2013). Perancangan Ulang Heat Recovery Steam Generator Dengan Sistem Dual Pressure Melalui Pemanfaatan Gas Buang Sebuah Turbin Gas Berdaya 160 Mw. Jurnal Rekayasa Mesin Universitas Sriwijaya, 13(1),21–33.
Corbett, J. J. (2003). New Directions: Designing ship emissions and impacts research to inform both science and policy. Atmospheric Environment, 37(33), 4719–4721. https://doi.org/10.1016/j.atmosenv.2003.08.003
Crespi, F., Gavagnin, G., Sánchez, D., & Martínez, G. S. (2017). Supercritical carbon dioxide cycles for power generation: A review. Applied Energy, 195, 152–183. https://doi.org/10.1016/j.apenergy.2017.02.048
Guo, C., Du, X., Yang, L., & Yang, Y. (2015). Organic Rankine cycle for power recovery of exhaust flue gas. Applied Thermal Engineering, 75, 135–144. https://doi.org/10.1016/j.applthermaleng.2014.09.080
Heberle, F., Schifflechner, C., & Brüggemann, D. (2016). Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics, 64, 392–400. https://doi.org/10.1016/j.geothermics.2016.06.010
Hidayat, R. (2017). Analisa Pengaruh Variasi Pinch Point Dan Approach Point Terhadap Performa Heat Recovery Steam Generator Tipe Dual Pressure.
Kemp, I. C. (2007). Key concepts of pinch analysis. In Pinch Analysis and Process Integration (Second Edi, pp. 15–38). Elsevier’s Science & Technology.
Larsen, U., Sigthorsson, O., & Haglind, F. (2014). A comparison of advanced heat recovery power cycles in a combined cycle for large ships. Energy, 74(C), 260–268. https://doi.org/10.1016/j.energy.2014.06.096
Linnhoff, B., Mason, D. R. and Wardle, I. (1979). Understanding heat exchanger networks. Comp Chem Eng, 3, 295–302.
Mat Nawi, Z., Kamarudin, S. K., Sheikh Abdullah, S. R., & Lam, S. S. (2019). The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle. Energy, 166, 17–31. https://doi.org/10.1016/j.energy.2018.10.064
Pulat, E., Etemoglu, A. B., & Can, M. (2009). Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa. Renewable and Sustainable Energy Reviews, 13(3), 663–672. https://doi.org/10.1016/j.rser.2007.10.002
Rayegan, R., & Tao, Y. X. (2011). A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs). Renewable Energy, 36(2), 659–670. https://doi.org/10.1016/j.renene.2010.07 .010
Safari, F., & Ataei, A. (2015). Thermodynamic Performance Analysis of Different Organic Rankine Cycles to Generate Power from Renewable Energy Resources. 4th International Conference on Emerging Trends in Energy Conservation, 1(2), 31–38. http://www.researchgate.net/publication/271530870_Thermodynamic_Performance_Analysis_of_Different_Organic_Rankine_Cycles_to_Generate_Power_from_Renewable_Energy_Resources
Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles. Energy, 32(7), 1210–1221. https://doi.org/10.1016/j.energy.2006.07.001
Sprouse, C., & Depcik, C. (2013). Organic rankine cycles with dry fluids for small engine exhaust waste heat recovery. SAE International Journal of Alternative Powertrains, 2(1), 96–104. https://doi.org/10.4271/2013-01-0878
Wang, H., Xu, J., Yang, X., Miao, Z., & Yu, C. (2015). Organic Rankine cycle saves energy and reduces gas emissions for cement production. Energy, 86, 59–73. https://doi.org/10.1016/j.energy.2015.03.112
Zhang, X., Wu, L., Wang, X., & Ju, G. (2016). Comparative study of waste heat steam SRC, ORC and S-ORC power generation systems in medium-low temperature. Applied Thermal Engineering, 106, 1427–1439. https://doi.org/10.1016/j.applthermaleng.2016.06.108
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).